viernes, 20 de enero de 2012

Unidad de Estado Solido (SSD)

Unidad de Estado Solido (SSD) 

Una Unidad de Estado Sólido o SSD (acrónimo de solid-state drive) es un dispositivo de almacenamiento de datos que usa memoria no volátil tales como flash, o memoria volátil como la SDRAM, para almacenar datos, en lugar de los platos giratorios magnéticos encontrados en los discos duros convencionales. En comparación con los discos duros tradicionales. 
Los SSD son menos susceptibles a golpes, son prácticamente inaudibles y tienen un menor tiempo de acceso y de latencia. Los SSD hacen uso de la misma interfaz que los discos duros, y por tanto son fácilmente intercambiables sin tener que recurrir a adaptadores o tarjetas de expansión para compatibilizarlos con el equipo. 
Aunque técnicamente no son discos a veces se traduce erróneamente en español la 'D' de SSD como disk cuando en realidad representa la palabra drive, que podría traducirse como unidad o dispositivo. 
Se han desarrollado dispositivos que combinan ambas tecnologías, es decir discos duros y memorias flash, se denominan discos duros híbridos. 

Una memoria de estado sólido es un dispositivo de almacenamiento secundario hecho con componentes electrónicos de estado sólido para su uso en equipos informáticos en reemplazo de una unidad de disco duro convencional, como memoria auxiliar o para la fabricación de unidades híbridas compuestas por SSD y disco duro
Consta de una memoria no volátil, en lugar de los platos giratorios y cabezal, que son encontrados en las unidades de disco duro convencionales. Sin partes móviles, una unidad de estado sólido pretende reducir drásticamente el tiempo de búsqueda, latencia y otros, esperando diferenciarse positivamente de sus primos hermanos los discos duros. 
Al ser inmune a las vibraciones externas, lo hace especialmente apto para su uso en vehículos, computadoras portátiles, etc. 

Arquitectura, Diseño y funcionamiento 

Chasis abierto de un disco duro tradicional de 2'5" (izquierda). Interior de un dispositivo de estado sólido (centro). Aspecto de un dispositivo SSD indicado especialmente para ordenadores portátiles (derecha). 

Se distinguen dos periodos, al principio se construían con una memoria volátil DRAM para más adelante empezar a fabricarse con una memoria no volátil NAND flash
 
Basados en NAND Flash 
Casi la totalidad de los fabricantes comercializan sus SSD bajo memorias no volátiles NAND flash para desarrollar un dispositivo no sólo veloz y con una vasta capacidad, sino robusto y a la vez lo más compacto posible tanto para el mercado de consumo como el profesional. Al ser memorias no volátiles no requieren ningún tipo de alimentación constante ni pilas para no perder los datos almacenados, incluso en apagones repentinos, aunque cabe destacar que los SSD NAND Flash son más lentos los que se basan en DRAM. Son comercializadas bajo los factores de forma heredados de los discos duros, es decir, en 3,5 pulgadas, 2,5 pulgadas y 1,8 pulgadas, aunque también ciertas SSD vienen en formato tarjeta de expansión. 
En ciertas ocasiones, existen SSD más lentos que discos duros, en especial en controladoras antiguas de gamas bajas, pero dado que los tiempos de acceso de un SSD son inapreciables, al final resultan más rápidos. Los tiempos de acceso reducidos se deben a la carencia de partes mecánicas móviles, inherentes en los discos duros.
 
Un SSD se compone principalmente: 
Controladora: Es un procesador electrónico que se encarga de administrar, gestionar y unir los módulos de memoria NAND con los conectores en entrada y salida. Ejecuta software a nivel de Firmware y es con toda seguridad, el factor más determinante para las velocidades del dispositivo. 
Caché: Un dispositivo SSD utiliza un pequeño dispositivo de memoria DRAM similar al caché de los discos duros. El directorio de la colocación de bloques y el desgaste de nivelación de datos también se mantiene en la memoria caché mientras la unidad está operativa. 
Condensador: Es necesario para mantener la integridad de los datos de la memoria caché, si la alimentación eléctrica se ha detenido inesperadamente, el tiempo suficiente para que se puedan enviar los datos retenidos hacia la memoria no volátil. 
El rendimiento de los SSD se incrementan añadiendo chips NAND Flash en paralelo. Un sólo chip NAND Flash es relativamente lento, dado que la interfaz de entrada y salida es de 8 o 16 bits asíncrona y también por la latencia adicional de las operaciones básicas de E/S (Típica de los SLC NAND - aproximadamente 25 μs para buscar una página de 4K de la matriz en el búfer de E/S en una lectura, aproximadamente 250 μs para una página de 4K de la memoria intermedia de E/S a la matriz de la escritura y sobre 2 ms para borrar un bloque de 256 KB). Cuando varios dispositivos NAND operan en paralelo dentro de un SSD, las escalas de ancho de banda se incrementan y las latencias de alta se minimizan, siempre y cuando suficientes operaciones esten pendientes y la carga se distribuya uniformemente entre los dispositivos. 
Los SSD de Micron e Intel fabricaron unidades flash mediante la aplicación de los datos de creación de bandas (similar a RAID 0) e intercalado. Esto permitió la creación de SSD ultrarápidos con 250 MB/s de lectura y escritura. 
Las controladoras Sandforce SF 1000 Series consiguen tasas de transferencia cercanas a la saturación de la interfaz SATA II (rozando los 300 MB/s simétricos tanto en lectura como en escritura). Su próxima generación de controladoras, las Sandforce SF 2000 Series, llegan mas allá de los 500 MB/s simétricos de lectura y escritura, requiriendo de una interfaz SATA III si se desea alcanzar estos registros.
 
Basados en DRAM 
Los SSD basados en éste tipo de almacenamiento proporcionan una rauda velocidad de acceso a datos, entorno a 10 μs y se utilizan principalmente para acelerar aplicaciones que de otra manera serían mermadas por la latencia del resto de sistemas. Estos SSD incorporan una batería o bien un adaptador de corriente continua, además de un sistema de copia de seguridad de almacenamiento para desconexiones abruptas que al restablecerse vuelve a volcarse a la memoria no volátil, algo similar al sistema de hibernación de los sistemas operativos 
Estos SSD son generalmente equipados con las mismas DIMMs de RAM que cualquier ordenador corriente, permitiendo su sustitución o expansión. 
Sin embargo con las mejoras de las memorias basadas en flash están haciendo del los SSD basados en DRAM no tan efectivos y acortando la brecha que los separa en términos de rendimiento. Además los sistemas basados en DRAM son tremendamente más caros. 

Tecnologías 
Los SSD basados en NAND almacenan la información no volátil en celdas mediante puertas lógicas "Y Negadas". Actualmente las celdas son fabricadas mediante dos tecnologías distintas: 


Comparación entre Chips MLC y SLC 

SLC 
Del inglés Single Level Cell o Celda de Nivel Individual. Este proceso consiste en cortar las obleas de silicio y obtener chips de memoria. Este proceso monolítico tiene la ventaja de que los chips son considerablemente más rápidos que los de la tecnología opuesta(MLC), mayor longevidad, menor consumo, un menor tiempo de acceso a los datos. A contrapartida, la densidad de capacidad por chips es menor, y por ende, un considerable mayor precio en los dispositivos fabricados con éste método. A nivel técnico, pueden almacenar solamente 1 bit de datos por celda. 
MLC 
Del inglés Multi Level Cell o Celda de Nivel Múltiple. Este proceso consiste en apilar varios moldes de la oblea para formar un sólo chip. Las principales ventajas de este sistema de fabricación es tener una mayor capacidad por chip que con el sistema SLC y por tanto, un menor precio final en el dispositivo. A nivel técnico es menos fiable, durable, rápido y avanzado que las SLC. Éstos tipos de celdas almacenan 2 bits por cada una, es decir 4 estados, por esa razón las tasas de lectura y escritura de datos se ven mermadas. Toshiba ha conseguido desarrollar celdas de 3 bits 



link: http://www.youtube.com/watch?v=CEBErgmJ_Cs 
Primera prueba de los SSD (en condiciones extremas) 




link: http://www.youtube.com/watch?v=l9S_dBNU4MY 
Segunda prueba de los SSD (Alan y Bryce testearon las unidades de estado sólido (SSD) de Intel en pleno desierto de Nevada, Estados Unidos. Esta unidad, conocida por su velocidad y menor consumo de potencia, también superó las altas temperas sin fallas en su funcionamiento.) Vean como soporta al ser aplastada por lo que parece ser un Mitsubushi Eclipse GT
 

Optimizaciones afines a SSD en los sistemas de archivos 
Los sistemas de archivos se pensaron para trabajar y gestionar sus archivos según las funcionalidades de un disco duro. Ese método de gestión no es eficaz para ordenar los archivos dentro del SSD, provocando una seria degradación del rendimiento cuanto más se usa, recuperable por formateo total de la unidad de estado sólido, pero resultando engorroso, sobre todo en sistemas operativos que dependan de almacenar diariamente bases de datos. Para solucionarlo, diferentes sistemas operativos optimizaron sus sistemas de archivos para trabajar eficientemente con unidades de estado sólido, cuando éstas eran detectadas como tales, en vez de como dispositivos de disco duro. Entre dichos sistemas, destacamos: 
NTFS y exFAT -Microsoft Windows 
Antes de Windows 7, todos los sistemas operativos venían preparados para manejar con precisión las unidades de disco duro, Windows Vista incluyó la característica ReadyBoost para mejorar y aprovechar las características de las unidades USB, pero para los SSD tan sólo optimizaba la alineación de la partición para prevenir operaciones de lectura, modificaciones y escritura ya que en los SSD normalmente los sectores son de 4 KiB, y actualmente los discos duros tienen sectores de 512 bytes desalineados (que luego también se aumentaron a 4 KiB). Entre algunas cosas, se recomienda desactivar el desfragmentador, su uso en una unidad SSD no tiene sentido, y reduciría su vida al hacer un uso continuo de los ciclos de lectura y escritura. 
Windows 7 viene optimizado de serie para manejar correctamente los SSD sin perder compatibilidad con los discos duros. El sistema detecta automáticamente si es unidad de estado sólido o disco duro, y cambia varias configuraciones, por ejemplo, desactiva automáticamente el desfragmentador, el Superfetch, el Readyboost, cambia el sistema de arranque e introduce el comando TRIM, que prolonga la vida útil de los SSD e impide la degradación de su rendimiento.
 
ZFS 
Solaris, en su versión 10u6, y las últimas versiones de OpenSolaris y Solaris Express Community Edition, se pueden usar SSD para mejorar el rendimiento del sistema ZFS. Hay dos modos disponibles, utilizando un SSD para el registro de ZFS Intent (ZIL) o para la L2ARC. Cuando se usa solo o en combinación, se aumenta radicalmente el rendimiento. 
Los nuevos SSD incluyen la tecnologia GC (Garbage Collector) Otro mecanismo muy útil, en especial para las personas que no tienen el PC encendido todo el día. Consiste en programar o forzar limpiezas manuales. A estas utilidades se las conoce como recolectoras de basura y permiten de un modo manual borrar esos bloques en desuso. Este tipo de utilidades son útiles si no usamos un sistema operativo como Windows 7 y también se puede usar en combinación con TRIM.
 

Ventajas e inconvenientes 
Ventajas 
Los dispositivos de estado sólido basados en Flash tienen varias ventajas únicas frente a los Discos Duros mecánicos
Arranque más rápido, al no tener platos que necesiten coger una velocidad constante. 
Gran velocidad de escritura
Mayor rapidez de lectura - Incluso más de 10 veces más que los discos duros tradicionales más rápidos gracias a RAIDs internos en un mismo SSD. 
Baja latencia de lectura y escritura, cientos de veces más rápido que los discos mecánicos. 
Lanzamiento y arranque de aplicaciones en menor tiempo - Resultado de la mayor velocidad de lectura y especialmente del tiempo de búsqueda. Pero solo si la aplicación reside en flash y es más dependiente de la velocidad de lectura que de otros aspectos. 
Menor consumo de energía y producción de calor - Resultado de no tener elementos mecánicos. 
Sin ruido - La misma carencia de partes mecánicas los hace completamente inaudibles. 
Mejorado el tiempo medio entre fallos, superando 2 millones de horas, muy superior al de los discos duros. 
Seguridad - permitiendo una muy rápida "limpieza" de los datos almacenados. 
Rendimiento determinístico - a diferencia de los discos duros mecánicos, el rendimiento de los SSD es constante y determinístico a través del almacenamiento entero. El tiempo de "búsqueda" constante. 
El rendimiento no se deteriora mientras el medio se llena. 
Menor peso y tamaño que un disco duro tradicional de similar capacidad. 
Resistente - Soporta caídas, golpes y vibraciones sin estropearse y sin descalibrarse como pasaba con los antiguos discos duros, gracias a carecer de elementos mecánicos. 
Borrado más seguro e irrecuperable de datos; es decir, no es necesario hacer uso del Algoritmo Gutmann para cerciorarse totalmente del borrado de un archivo.
 
Limitaciones 
Los dispositivos de estado sólido basados en flash tienen también varias desventajas: 
Precio - Los precios de las memorias flash son considerablemente más altos en relación Precio/GB, la principal razón de su baja demanda. Sin embargo, ésta no es una desventaja técnica. Según se establezcan en el mercado irá mermando su precio y comparándose a los discos duros mecánicos, que en teoría son más caros de producir al llevar piezas metálicas. 
Menor recuperación - Después de un fallo mecánico los datos son completamente perdidos pues la celda es destruida, mientras que en un disco duro normal que sufre daño mecánico los datos son frecuentemente recuperables usando ayuda de expertos. 
Capacidad - A día de hoy, tienen menor capacidad máxima que la de un disco duro convencional, que llega a superar los 3 Terabytes
Antiguas desventajas ya solucionadas
Degradación de rendimiento al cabo de mucho uso en las memorias NAND (solucionado con el sistema TRIM). 
Menor velocidad en operaciones I/O secuenciales. (Ya se ha conseguido una velocidad similar). 
Vulnerabilidad contra ciertos tipo de efectos - Incluyendo pérdida de energía abrupta (en los SSD basado en DRAM), campos magnéticos y cargas estáticas comparados con los discos duros normales (que almacenan los datos dentro de una Jaula de Faraday).
 

No hay comentarios:

Publicar un comentario